pub struct GroupBy<'df> { /* private fields */ }
Expand description
Returned by a groupby operation on a DataFrame. This struct supports several aggregations.
Until described otherwise, the examples in this struct are performed on the following DataFrame:
use polars_core::prelude::*;
let dates = &[
"2020-08-21",
"2020-08-21",
"2020-08-22",
"2020-08-23",
"2020-08-22",
];
// date format
let fmt = "%Y-%m-%d";
// create date series
let s0 = DateChunked::parse_from_str_slice("date", dates, fmt)
.into_series();
// create temperature series
let s1 = Series::new("temp", [20, 10, 7, 9, 1]);
// create rain series
let s2 = Series::new("rain", [0.2, 0.1, 0.3, 0.1, 0.01]);
// create a new DataFrame
let df = DataFrame::new(vec![s0, s1, s2]).unwrap();
println!("{:?}", df);
Outputs:
+------------+------+------+
| date | temp | rain |
| --- | --- | --- |
| Date | i32 | f64 |
+============+======+======+
| 2020-08-21 | 20 | 0.2 |
+------------+------+------+
| 2020-08-21 | 10 | 0.1 |
+------------+------+------+
| 2020-08-22 | 7 | 0.3 |
+------------+------+------+
| 2020-08-23 | 9 | 0.1 |
+------------+------+------+
| 2020-08-22 | 1 | 0.01 |
+------------+------+------+
Implementations
sourceimpl<'df> GroupBy<'df>
impl<'df> GroupBy<'df>
sourcepub fn pivot(
&mut self,
columns: impl IntoVec<String>,
values: impl IntoVec<String>
) -> Pivot<'_>
This is supported on crate feature rows
only.
pub fn pivot(
&mut self,
columns: impl IntoVec<String>,
values: impl IntoVec<String>
) -> Pivot<'_>
rows
only.Pivot a column of the current DataFrame
and perform one of the following aggregations:
- first
- last
- sum
- min
- max
- mean
- median
The pivot operation consists of a group by one, or multiple columns (these will be the new y-axis), column that will be pivoted (this will be the new x-axis) and an aggregation.
Panics
If the values column is not a numerical type, the code will panic.
Example
use polars_core::prelude::*;
use polars_core::df;
fn example() -> Result<DataFrame> {
let df = df!["foo" => ["A", "A", "B", "B", "C"],
"N" => [1, 2, 2, 4, 2],
"bar" => ["k", "l", "m", "n", "0"]
]?;
df.groupby(["foo"])?
.pivot(["bar"], ["N"])
.first()
}
Transforms:
+-----+-----+-----+
| foo | N | bar |
| --- | --- | --- |
| str | i32 | str |
+=====+=====+=====+
| "A" | 1 | "k" |
+-----+-----+-----+
| "A" | 2 | "l" |
+-----+-----+-----+
| "B" | 2 | "m" |
+-----+-----+-----+
| "B" | 4 | "n" |
+-----+-----+-----+
| "C" | 2 | "o" |
+-----+-----+-----+
Into:
+-----+------+------+------+------+------+
| foo | o | n | m | l | k |
| --- | --- | --- | --- | --- | --- |
| str | i32 | i32 | i32 | i32 | i32 |
+=====+======+======+======+======+======+
| "A" | null | null | null | 2 | 1 |
+-----+------+------+------+------+------+
| "B" | null | 4 | 2 | null | null |
+-----+------+------+------+------+------+
| "C" | 2 | null | null | null | null |
+-----+------+------+------+------+------+
sourceimpl<'df> GroupBy<'df>
impl<'df> GroupBy<'df>
pub fn new(
df: &'df DataFrame,
by: Vec<Series, Global>,
groups: GroupsProxy,
selected_agg: Option<Vec<String, Global>>
) -> GroupBy<'df>
sourcepub fn select<I, S>(self, selection: I) -> GroupBy<'df> where
I: IntoIterator<Item = S>,
S: AsRef<str>,
pub fn select<I, S>(self, selection: I) -> GroupBy<'df> where
I: IntoIterator<Item = S>,
S: AsRef<str>,
Select the column(s) that should be aggregated. You can select a single column or a slice of columns.
Note that making a selection with this method is not required. If you skip it all columns (except for the keys) will be selected for aggregation.
sourcepub fn get_groups(&self) -> &GroupsProxy
pub fn get_groups(&self) -> &GroupsProxy
Get the internal representation of the GroupBy operation.
The Vec returned contains:
(first_idx, Vec
sourcepub fn get_groups_mut(&mut self) -> &mut GroupsProxy
pub fn get_groups_mut(&mut self) -> &mut GroupsProxy
Get the internal representation of the GroupBy operation.
The Vec returned contains:
(first_idx, Vec
pub fn take_groups(self) -> GroupsProxy
pub fn keys(&self) -> Vec<Series, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
sourcepub fn mean(&self) -> Result<DataFrame, PolarsError>
pub fn mean(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped series and compute the mean per group.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.select(&["temp", "rain"]).mean()
}
Returns:
+------------+-----------+-----------+
| date | temp_mean | rain_mean |
| --- | --- | --- |
| Date | f64 | f64 |
+============+===========+===========+
| 2020-08-23 | 9 | 0.1 |
+------------+-----------+-----------+
| 2020-08-22 | 4 | 0.155 |
+------------+-----------+-----------+
| 2020-08-21 | 15 | 0.15 |
+------------+-----------+-----------+
sourcepub fn sum(&self) -> Result<DataFrame, PolarsError>
pub fn sum(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped series and compute the sum per group.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.select(["temp"]).sum()
}
Returns:
+------------+----------+
| date | temp_sum |
| --- | --- |
| Date | i32 |
+============+==========+
| 2020-08-23 | 9 |
+------------+----------+
| 2020-08-22 | 8 |
+------------+----------+
| 2020-08-21 | 30 |
+------------+----------+
sourcepub fn min(&self) -> Result<DataFrame, PolarsError>
pub fn min(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped series and compute the minimal value per group.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.select(["temp"]).min()
}
Returns:
+------------+----------+
| date | temp_min |
| --- | --- |
| Date | i32 |
+============+==========+
| 2020-08-23 | 9 |
+------------+----------+
| 2020-08-22 | 1 |
+------------+----------+
| 2020-08-21 | 10 |
+------------+----------+
sourcepub fn max(&self) -> Result<DataFrame, PolarsError>
pub fn max(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped series and compute the maximum value per group.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.select(["temp"]).max()
}
Returns:
+------------+----------+
| date | temp_max |
| --- | --- |
| Date | i32 |
+============+==========+
| 2020-08-23 | 9 |
+------------+----------+
| 2020-08-22 | 7 |
+------------+----------+
| 2020-08-21 | 20 |
+------------+----------+
sourcepub fn first(&self) -> Result<DataFrame, PolarsError>
pub fn first(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped Series
and find the first value per group.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.select(["temp"]).first()
}
Returns:
+------------+------------+
| date | temp_first |
| --- | --- |
| Date | i32 |
+============+============+
| 2020-08-23 | 9 |
+------------+------------+
| 2020-08-22 | 7 |
+------------+------------+
| 2020-08-21 | 20 |
+------------+------------+
sourcepub fn last(&self) -> Result<DataFrame, PolarsError>
pub fn last(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped Series
and return the last value per group.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.select(["temp"]).last()
}
Returns:
+------------+------------+
| date | temp_last |
| --- | --- |
| Date | i32 |
+============+============+
| 2020-08-23 | 9 |
+------------+------------+
| 2020-08-22 | 1 |
+------------+------------+
| 2020-08-21 | 10 |
+------------+------------+
sourcepub fn n_unique(&self) -> Result<DataFrame, PolarsError>
pub fn n_unique(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped Series
by counting the number of unique values.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.select(["temp"]).n_unique()
}
Returns:
+------------+---------------+
| date | temp_n_unique |
| --- | --- |
| Date | u32 |
+============+===============+
| 2020-08-23 | 1 |
+------------+---------------+
| 2020-08-22 | 2 |
+------------+---------------+
| 2020-08-21 | 2 |
+------------+---------------+
sourcepub fn quantile(
&self,
quantile: f64,
interpol: QuantileInterpolOptions
) -> Result<DataFrame, PolarsError>
pub fn quantile(
&self,
quantile: f64,
interpol: QuantileInterpolOptions
) -> Result<DataFrame, PolarsError>
Aggregate grouped Series
and determine the quantile per group.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.select(["temp"]).quantile(0.2, QuantileInterpolOptions::default())
}
sourcepub fn median(&self) -> Result<DataFrame, PolarsError>
pub fn median(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped Series
and determine the median per group.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.select(["temp"]).median()
}
sourcepub fn var(&self) -> Result<DataFrame, PolarsError>
pub fn var(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped Series
and determine the variance per group.
sourcepub fn std(&self) -> Result<DataFrame, PolarsError>
pub fn std(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped Series
and determine the standard deviation per group.
sourcepub fn count(&self) -> Result<DataFrame, PolarsError>
pub fn count(&self) -> Result<DataFrame, PolarsError>
Aggregate grouped series and compute the number of values per group.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.select(["temp"]).count()
}
Returns:
+------------+------------+
| date | temp_count |
| --- | --- |
| Date | u32 |
+============+============+
| 2020-08-23 | 1 |
+------------+------------+
| 2020-08-22 | 2 |
+------------+------------+
| 2020-08-21 | 2 |
+------------+------------+
sourcepub fn groups(&self) -> Result<DataFrame, PolarsError>
pub fn groups(&self) -> Result<DataFrame, PolarsError>
Get the groupby group indexes.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.groups()
}
Returns:
+--------------+------------+
| date | groups |
| --- | --- |
| Date(days) | list [u32] |
+==============+============+
| 2020-08-23 | "[3]" |
+--------------+------------+
| 2020-08-22 | "[2, 4]" |
+--------------+------------+
| 2020-08-21 | "[0, 1]" |
+--------------+------------+
sourcepub fn agg<Column, S, Slice>(
&self,
column_to_agg: &[(Column, Slice)]
) -> Result<DataFrame, PolarsError> where
S: AsRef<str>,
Slice: AsRef<[S]>,
Column: AsRef<str>,
pub fn agg<Column, S, Slice>(
&self,
column_to_agg: &[(Column, Slice)]
) -> Result<DataFrame, PolarsError> where
S: AsRef<str>,
Slice: AsRef<[S]>,
Column: AsRef<str>,
Combine different aggregations on columns
Operations
- count
- first
- last
- sum
- min
- max
- mean
- median
Example
fn example(df: DataFrame) -> Result<DataFrame> {
df.groupby(["date"])?.agg(&[("temp", &["n_unique", "sum", "min"])])
}
Returns:
+--------------+---------------+----------+----------+
| date | temp_n_unique | temp_sum | temp_min |
| --- | --- | --- | --- |
| Date(days) | u32 | i32 | i32 |
+==============+===============+==========+==========+
| 2020-08-23 | 1 | 9 | 9 |
+--------------+---------------+----------+----------+
| 2020-08-22 | 2 | 8 | 1 |
+--------------+---------------+----------+----------+
| 2020-08-21 | 2 | 30 | 10 |
+--------------+---------------+----------+----------+
sourcepub fn agg_list(&self) -> Result<DataFrame, PolarsError>
pub fn agg_list(&self) -> Result<DataFrame, PolarsError>
Aggregate the groups of the groupby operation into lists.
Example
fn example(df: DataFrame) -> Result<DataFrame> {
// GroupBy and aggregate to Lists
df.groupby(["date"])?.select(["temp"]).agg_list()
}
Returns:
+------------+------------------------+
| date | temp_agg_list |
| --- | --- |
| Date | list [i32] |
+============+========================+
| 2020-08-23 | "[Some(9)]" |
+------------+------------------------+
| 2020-08-22 | "[Some(7), Some(1)]" |
+------------+------------------------+
| 2020-08-21 | "[Some(20), Some(10)]" |
+------------+------------------------+
Trait Implementations
Auto Trait Implementations
impl<'df> !RefUnwindSafe for GroupBy<'df>
impl<'df> Send for GroupBy<'df>
impl<'df> Sync for GroupBy<'df>
impl<'df> Unpin for GroupBy<'df>
impl<'df> !UnwindSafe for GroupBy<'df>
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> Pointable for T
impl<T> Pointable for T
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcefn clone_into(&self, target: &mut T)
fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more