1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
//! Defines the multiplication arithmetic kernels for Decimal
//! `PrimitiveArrays`.
use crate::{
array::PrimitiveArray,
compute::{
arithmetics::{ArrayCheckedMul, ArrayMul, ArraySaturatingMul},
arity::{binary, binary_checked, unary},
utils::{check_same_len, combine_validities},
},
datatypes::DataType,
error::{ArrowError, Result},
scalar::{PrimitiveScalar, Scalar},
};
use super::{adjusted_precision_scale, get_parameters, max_value, number_digits};
/// Multiply two decimal primitive arrays with the same precision and scale. If
/// the precision and scale is different, then an InvalidArgumentError is
/// returned. This function panics if the multiplied numbers result in a number
/// larger than the possible number for the selected precision.
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::mul;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(1_00i128), Some(1_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
/// let b = PrimitiveArray::from([Some(1_00i128), Some(2_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
///
/// let result = mul(&a, &b);
/// let expected = PrimitiveArray::from([Some(1_00i128), Some(2_00i128), None, Some(4_00i128)]).to(DataType::Decimal(5, 2));
///
/// assert_eq!(result, expected);
/// ```
pub fn mul(lhs: &PrimitiveArray<i128>, rhs: &PrimitiveArray<i128>) -> PrimitiveArray<i128> {
let (precision, scale) = get_parameters(lhs.data_type(), rhs.data_type()).unwrap();
let scale = 10i128.pow(scale as u32);
let max = max_value(precision);
let op = move |a: i128, b: i128| {
// The multiplication between i128 can overflow if they are
// very large numbers. For that reason a checked
// multiplication is used.
let res: i128 = a.checked_mul(b).expect("Mayor overflow for multiplication");
// The multiplication is done using the numbers without scale.
// The resulting scale of the value has to be corrected by
// dividing by (10^scale)
// 111.111 --> 111111
// 222.222 --> 222222
// -------- -------
// 24691.308 <-- 24691308642
let res = res / scale;
assert!(
res.abs() <= max,
"Overflow in multiplication presented for precision {}",
precision
);
res
};
binary(lhs, rhs, lhs.data_type().clone(), op)
}
/// Multiply a decimal [`PrimitiveArray`] with a [`PrimitiveScalar`] with the same precision and scale. If
/// the precision and scale is different, then an InvalidArgumentError is
/// returned. This function panics if the multiplied numbers result in a number
/// larger than the possible number for the selected precision.
pub fn mul_scalar(lhs: &PrimitiveArray<i128>, rhs: &PrimitiveScalar<i128>) -> PrimitiveArray<i128> {
let (precision, scale) = get_parameters(lhs.data_type(), rhs.data_type()).unwrap();
let rhs = if let Some(rhs) = rhs.value() {
rhs
} else {
return PrimitiveArray::<i128>::new_null(lhs.data_type().clone(), lhs.len());
};
let scale = 10i128.pow(scale as u32);
let max = max_value(precision);
let op = move |a: i128| {
// The multiplication between i128 can overflow if they are
// very large numbers. For that reason a checked
// multiplication is used.
let res: i128 = a
.checked_mul(rhs)
.expect("Mayor overflow for multiplication");
// The multiplication is done using the numbers without scale.
// The resulting scale of the value has to be corrected by
// dividing by (10^scale)
// 111.111 --> 111111
// 222.222 --> 222222
// -------- -------
// 24691.308 <-- 24691308642
let res = res / scale;
assert!(
res.abs() <= max,
"Overflow in multiplication presented for precision {}",
precision
);
res
};
unary(lhs, op, lhs.data_type().clone())
}
/// Saturated multiplication of two decimal primitive arrays with the same
/// precision and scale. If the precision and scale is different, then an
/// InvalidArgumentError is returned. If the result from the multiplication is
/// larger than the possible number with the selected precision then the
/// resulted number in the arrow array is the maximum number for the selected
/// precision.
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::saturating_mul;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(999_99i128), Some(1_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
/// let b = PrimitiveArray::from([Some(10_00i128), Some(2_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
///
/// let result = saturating_mul(&a, &b);
/// let expected = PrimitiveArray::from([Some(999_99i128), Some(2_00i128), None, Some(4_00i128)]).to(DataType::Decimal(5, 2));
///
/// assert_eq!(result, expected);
/// ```
pub fn saturating_mul(
lhs: &PrimitiveArray<i128>,
rhs: &PrimitiveArray<i128>,
) -> PrimitiveArray<i128> {
let (precision, scale) = get_parameters(lhs.data_type(), rhs.data_type()).unwrap();
let scale = 10i128.pow(scale as u32);
let max = max_value(precision);
let op = move |a: i128, b: i128| match a.checked_mul(b) {
Some(res) => {
let res = res / scale;
match res {
res if res.abs() > max => {
if res > 0 {
max
} else {
-max
}
}
_ => res,
}
}
None => max,
};
binary(lhs, rhs, lhs.data_type().clone(), op)
}
/// Checked multiplication of two decimal primitive arrays with the same
/// precision and scale. If the precision and scale is different, then an
/// InvalidArgumentError is returned. If the result from the mul is larger than
/// the possible number with the selected precision (overflowing), then the
/// validity for that index is changed to None
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::checked_mul;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(999_99i128), Some(1_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
/// let b = PrimitiveArray::from([Some(10_00i128), Some(2_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
///
/// let result = checked_mul(&a, &b);
/// let expected = PrimitiveArray::from([None, Some(2_00i128), None, Some(4_00i128)]).to(DataType::Decimal(5, 2));
///
/// assert_eq!(result, expected);
/// ```
pub fn checked_mul(lhs: &PrimitiveArray<i128>, rhs: &PrimitiveArray<i128>) -> PrimitiveArray<i128> {
let (precision, scale) = get_parameters(lhs.data_type(), rhs.data_type()).unwrap();
let scale = 10i128.pow(scale as u32);
let max = max_value(precision);
let op = move |a: i128, b: i128| match a.checked_mul(b) {
Some(res) => {
let res = res / scale;
match res {
res if res.abs() > max => None,
_ => Some(res),
}
}
None => None,
};
binary_checked(lhs, rhs, lhs.data_type().clone(), op)
}
// Implementation of ArrayMul trait for PrimitiveArrays
impl ArrayMul<PrimitiveArray<i128>> for PrimitiveArray<i128> {
fn mul(&self, rhs: &PrimitiveArray<i128>) -> Self {
mul(self, rhs)
}
}
// Implementation of ArrayCheckedMul trait for PrimitiveArrays
impl ArrayCheckedMul<PrimitiveArray<i128>> for PrimitiveArray<i128> {
fn checked_mul(&self, rhs: &PrimitiveArray<i128>) -> Self {
checked_mul(self, rhs)
}
}
// Implementation of ArraySaturatingMul trait for PrimitiveArrays
impl ArraySaturatingMul<PrimitiveArray<i128>> for PrimitiveArray<i128> {
fn saturating_mul(&self, rhs: &PrimitiveArray<i128>) -> Self {
saturating_mul(self, rhs)
}
}
/// Adaptive multiplication of two decimal primitive arrays with different
/// precision and scale. If the precision and scale is different, then the
/// smallest scale and precision is adjusted to the largest precision and
/// scale. If during the multiplication one of the results is larger than the
/// max possible value, the result precision is changed to the precision of the
/// max value
///
/// ```nocode
/// 11111.0 -> 6, 1
/// 10.002 -> 5, 3
/// -----------------
/// 111132.222 -> 9, 3
/// ```
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::adaptive_mul;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(11111_0i128), Some(1_0i128)]).to(DataType::Decimal(6, 1));
/// let b = PrimitiveArray::from([Some(10_002i128), Some(2_000i128)]).to(DataType::Decimal(5, 3));
/// let result = adaptive_mul(&a, &b).unwrap();
/// let expected = PrimitiveArray::from([Some(111132_222i128), Some(2_000i128)]).to(DataType::Decimal(9, 3));
///
/// assert_eq!(result, expected);
/// ```
pub fn adaptive_mul(
lhs: &PrimitiveArray<i128>,
rhs: &PrimitiveArray<i128>,
) -> Result<PrimitiveArray<i128>> {
check_same_len(lhs, rhs)?;
let (lhs_p, lhs_s, rhs_p, rhs_s) =
if let (DataType::Decimal(lhs_p, lhs_s), DataType::Decimal(rhs_p, rhs_s)) =
(lhs.data_type(), rhs.data_type())
{
(*lhs_p, *lhs_s, *rhs_p, *rhs_s)
} else {
return Err(ArrowError::InvalidArgumentError(
"Incorrect data type for the array".to_string(),
));
};
// The resulting precision is mutable because it could change while
// looping through the iterator
let (mut res_p, res_s, diff) = adjusted_precision_scale(lhs_p, lhs_s, rhs_p, rhs_s);
let shift = 10i128.pow(diff as u32);
let shift_1 = 10i128.pow(res_s as u32);
let mut max = max_value(res_p);
let values = lhs
.values()
.iter()
.zip(rhs.values().iter())
.map(|(l, r)| {
// Based on the array's scales one of the arguments in the sum has to be shifted
// to the left to match the final scale
let res = if lhs_s > rhs_s {
l.checked_mul(r * shift)
} else {
(l * shift).checked_mul(*r)
}
.expect("Mayor overflow for multiplication");
let res = res / shift_1;
// The precision of the resulting array will change if one of the
// multiplications during the iteration produces a value bigger
// than the possible value for the initial precision
// 10.0000 -> 6, 4
// 10.0000 -> 6, 4
// -----------------
// 100.0000 -> 7, 4
if res.abs() > max {
res_p = number_digits(res);
max = max_value(res_p);
}
res
})
.collect::<Vec<_>>();
let validity = combine_validities(lhs.validity(), rhs.validity());
Ok(PrimitiveArray::<i128>::new(
DataType::Decimal(res_p, res_s),
values.into(),
validity,
))
}