1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use crate::trusted_len::{PushUnchecked, TrustedLen};
use num::Float;
use std::fmt::Debug;
use std::ops::AddAssign;
// See:
// https://github.com/pola-rs/polars/issues/2148
// https://stackoverflow.com/a/51392341/6717054

// this is the adjusted variant in pandas
pub fn ewma_no_nulls<T, I>(vals: I, alpha: T) -> Vec<T>
where
    T: Float + AddAssign,
    I: IntoIterator<Item = T>,
    I::IntoIter: TrustedLen,
{
    let mut iter = vals.into_iter();
    let len = iter.size_hint().1.unwrap();
    if len == 0 {
        return vec![];
    }
    let mut weight = T::one();
    let mut out = Vec::with_capacity(len);

    let first = iter.next().unwrap();
    out.push(first);
    let mut ewma_old = first;
    let one_sub_alpha = T::one() - alpha;

    let mut i = T::from(out.len()).unwrap();
    for val in iter {
        weight += one_sub_alpha.powf(i);
        ewma_old = ewma_old * (one_sub_alpha) + val;
        // Safety:
        // we allocated vals.len()
        unsafe { out.push_unchecked(ewma_old / weight) };
        i += T::one();
    }

    out
}

pub fn ewma<T, I>(vals: I, alpha: T) -> (usize, Vec<T>)
where
    T: Float + AddAssign,
    I: IntoIterator<Item = Option<T>>,
    I::IntoIter: TrustedLen,
{
    let mut iter = vals.into_iter();
    let len = iter.size_hint().1.unwrap();
    if len == 0 {
        return (0, vec![]);
    }
    let mut weight = T::one();
    let mut out = Vec::with_capacity(len);

    let leading_null_count = set_first_none_null(&mut iter, &mut out);
    let mut ewma_old = out[out.len() - 1];
    let one_sub_alpha = T::one() - alpha;

    let mut i = T::one();
    let mut prev = out[out.len() - 1];
    for opt_val in iter {
        prev = match opt_val {
            Some(val) => {
                weight += one_sub_alpha.powf(i);
                ewma_old = ewma_old * (one_sub_alpha) + val;
                i += T::one();
                ewma_old / weight
            }
            None => prev,
        };
        // Safety:
        // we allocated vals.len()
        unsafe { out.push_unchecked(prev) };
    }

    (leading_null_count, out)
}

// this is the non-adjusted variant in pandas
pub fn ewma_inf_hist_no_nulls<T, I>(vals: I, alpha: T) -> Vec<T>
where
    T: Float + AddAssign + Debug,
    I: IntoIterator<Item = T>,
    I::IntoIter: TrustedLen,
{
    let mut iter = vals.into_iter();
    let len = iter.size_hint().1.unwrap();
    if len == 0 {
        return vec![];
    }

    let mut out = Vec::with_capacity(len);
    let first = iter.next().unwrap();
    out.push(first);
    let one_sub_alpha = T::one() - alpha;

    let mut prev = out[0];
    for val in iter {
        let output_val = val * alpha + prev * one_sub_alpha;
        prev = output_val;

        // Safety:
        // we allocated vals.len()
        unsafe { out.push_unchecked(output_val) }
    }

    out
}

// this is the non-adjusted variant in pandas
/// # Arguments
///
/// * `vals` - Iterator of optional values
/// * `alpha` - Smoothing factor
///
/// Returns the a tuple with:
/// * `leading_null_count` - the amount of nulls that must be set by the caller
/// * `smoothed values` - The result of the ewma
///
pub fn ewma_inf_hists<T, I>(vals: I, alpha: T) -> (usize, Vec<T>)
where
    T: Float + AddAssign + Debug,
    I: IntoIterator<Item = Option<T>>,
    I::IntoIter: TrustedLen,
{
    let mut iter = vals.into_iter();
    let len = iter.size_hint().1.unwrap();
    if len == 0 {
        return (0, vec![]);
    }

    let mut out = Vec::with_capacity(len);

    let leading_null_count = set_first_none_null(&mut iter, &mut out);
    let one_sub_alpha = T::one() - alpha;
    let mut prev = out[out.len() - 1];

    for opt_val in iter {
        let output_val = match opt_val {
            Some(val) => {
                // Safety:
                // we add first, so i - 1 always exits
                let output = val * alpha + prev * one_sub_alpha;
                prev = output;
                prev
            }
            None => prev,
        };

        // Safety:
        // we allocated vals.len()
        unsafe { out.push_unchecked(output_val) }
    }

    (leading_null_count, out)
}

pub fn set_first_none_null<T, I>(iter: &mut I, out: &mut Vec<T>) -> usize
where
    T: Float + AddAssign,
    I: Iterator<Item = Option<T>>,
{
    let mut leading_null_count = 0;
    // find first non null
    for opt_val in iter {
        match opt_val {
            // these will be later masked out by the validity
            None => {
                leading_null_count += 1;
                unsafe { out.push_unchecked(T::zero()) };
            }
            Some(val) => {
                unsafe { out.push_unchecked(val) };
                break;
            }
        }
    }
    leading_null_count
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_ewma() {
        let vals = [2.0, 5.0, 3.0];
        let out = ewma_no_nulls(vals.iter().copied(), 0.5);
        let expected = [2.0, 4.0, 3.4285714285714284];
        assert_eq!(out, expected);

        let vals = [2.0, 5.0, 3.0];
        let out = ewma_inf_hist_no_nulls(vals.iter().copied(), 0.5);
        let expected = [2.0, 3.5, 3.25];
        assert_eq!(out, expected);
    }

    #[test]
    fn test_ewma_null() {
        let vals = &[
            Some(2.0),
            Some(3.0),
            Some(5.0),
            Some(7.0),
            None,
            None,
            None,
            Some(4.0),
        ];
        let (cnt, out) = ewma_inf_hists(vals.into_iter().copied(), 0.5);
        assert_eq!(cnt, 0);
        let expected = [2.0, 2.5, 3.75, 5.375, 5.375, 5.375, 5.375, 4.6875];
        assert_eq!(out, expected);
        let vals = &[
            None,
            None,
            Some(5.0),
            Some(7.0),
            None,
            Some(2.0),
            Some(1.0),
            Some(4.0),
        ];
        let (cnt, out) = ewma_inf_hists(vals.into_iter().copied(), 0.5);
        let expected = [0.0, 0.0, 5.0, 6.0, 6.0, 4.0, 2.5, 3.25];
        assert_eq!(cnt, 2);
        assert_eq!(out, expected);

        let (cnt, out) = ewma(vals.into_iter().copied(), 0.5);
        let expected = [
            0.0,
            0.0,
            5.0,
            6.333333333333333,
            6.333333333333333,
            3.857142857142857,
            2.3333333333333335,
            3.193548387096774,
        ];
        assert_eq!(cnt, 2);
        assert_eq!(out, expected);

        let vals = &[
            None,
            Some(1.0),
            Some(5.0),
            Some(7.0),
            None,
            Some(2.0),
            Some(1.0),
            Some(4.0),
        ];
        let (cnt, out) = ewma(vals.into_iter().copied(), 0.5);
        let expected = [
            0.0,
            1.0,
            3.6666666666666665,
            5.571428571428571,
            5.571428571428571,
            3.6666666666666665,
            2.2903225806451615,
            3.1587301587301586,
        ];
        assert_eq!(cnt, 1);
        assert_eq!(out, expected);
    }
}