1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
use super::*;
use crate::utils::split_offsets;
use polars_arrow::prelude::*;

/// Used to create the tuples for a groupby operation.
pub trait IntoGroupsProxy {
    /// Create the tuples need for a groupby operation.
    ///     * The first value in the tuple is the first index of the group.
    ///     * The second value in the tuple is are the indexes of the groups including the first value.
    fn group_tuples(&self, _multithreaded: bool, _sorted: bool) -> GroupsProxy {
        unimplemented!()
    }
}

fn group_multithreaded<T>(ca: &ChunkedArray<T>) -> bool {
    // TODO! change to something sensible
    ca.len() > 1000
}

fn num_groups_proxy<T>(ca: &ChunkedArray<T>, multithreaded: bool, sorted: bool) -> GroupsProxy
where
    T: PolarsIntegerType,
    T::Native: Hash + Eq + Send + AsU64,
    Option<T::Native>: AsU64,
{
    #[cfg(feature = "dtype-categorical")]
    let group_size_hint = if let Some(m) = &ca.categorical_map {
        ca.len() / m.len()
    } else {
        0
    };
    #[cfg(not(feature = "dtype-categorical"))]
    let group_size_hint = 0;
    if multithreaded && group_multithreaded(ca) {
        let n_partitions = set_partition_size() as u64;

        // use the arrays as iterators
        if ca.chunks.len() == 1 {
            if !ca.has_validity() {
                let keys = vec![ca.cont_slice().unwrap()];
                groupby_threaded_num(keys, group_size_hint, n_partitions, sorted)
            } else {
                let keys = ca
                    .downcast_iter()
                    .map(|arr| arr.into_iter().map(|x| x.copied()).collect::<Vec<_>>())
                    .collect::<Vec<_>>();
                groupby_threaded_num(keys, group_size_hint, n_partitions, sorted)
            }
            // use the polars-iterators
        } else if !ca.has_validity() {
            let keys = vec![ca.into_no_null_iter().collect::<Vec<_>>()];
            groupby_threaded_num(keys, group_size_hint, n_partitions, sorted)
        } else {
            let keys = vec![ca.into_iter().collect::<Vec<_>>()];
            groupby_threaded_num(keys, group_size_hint, n_partitions, sorted)
        }
    } else if !ca.has_validity() {
        groupby(ca.into_no_null_iter(), sorted)
    } else {
        groupby(ca.into_iter(), sorted)
    }
}

impl<T> IntoGroupsProxy for ChunkedArray<T>
where
    T: PolarsNumericType,
    T::Native: NumCast,
{
    fn group_tuples(&self, multithreaded: bool, sorted: bool) -> GroupsProxy {
        match self.dtype() {
            DataType::UInt64 => {
                // convince the compiler that we are this type.
                let ca: &UInt64Chunked = unsafe {
                    &*(self as *const ChunkedArray<T> as *const ChunkedArray<UInt64Type>)
                };
                num_groups_proxy(ca, multithreaded, sorted)
            }
            DataType::UInt32 => {
                // convince the compiler that we are this type.
                let ca: &UInt32Chunked = unsafe {
                    &*(self as *const ChunkedArray<T> as *const ChunkedArray<UInt32Type>)
                };
                num_groups_proxy(ca, multithreaded, sorted)
            }
            DataType::Int64 | DataType::Float64 => {
                let ca = self.bit_repr_large();
                num_groups_proxy(&ca, multithreaded, sorted)
            }
            DataType::Int32 | DataType::Float32 => {
                let ca = self.bit_repr_small();
                num_groups_proxy(&ca, multithreaded, sorted)
            }
            _ => {
                let ca = self.cast(&DataType::UInt32).unwrap();
                let ca = ca.u32().unwrap();
                num_groups_proxy(ca, multithreaded, sorted)
            }
        }
    }
}
impl IntoGroupsProxy for BooleanChunked {
    fn group_tuples(&self, multithreaded: bool, sorted: bool) -> GroupsProxy {
        let ca = self.cast(&DataType::UInt32).unwrap();
        let ca = ca.u32().unwrap();
        ca.group_tuples(multithreaded, sorted)
    }
}

impl IntoGroupsProxy for Utf8Chunked {
    #[allow(clippy::needless_lifetimes)]
    fn group_tuples<'a>(&'a self, multithreaded: bool, sorted: bool) -> GroupsProxy {
        let hb = RandomState::default();
        let null_h = get_null_hash_value(hb.clone());

        if multithreaded {
            let n_partitions = set_partition_size();

            let split = split_offsets(self.len(), n_partitions);

            let str_hashes = POOL.install(|| {
                split
                    .into_par_iter()
                    .map(|(offset, len)| {
                        let ca = self.slice(offset as i64, len);
                        ca.into_iter()
                            .map(|opt_s| {
                                let hash = match opt_s {
                                    Some(s) => str::get_hash(s, &hb),
                                    None => null_h,
                                };
                                // Safety:
                                // the underlying data is tied to self
                                unsafe {
                                    std::mem::transmute::<StrHash<'_>, StrHash<'a>>(StrHash::new(
                                        opt_s, hash,
                                    ))
                                }
                            })
                            .collect::<Vec<_>>()
                    })
                    .collect::<Vec<_>>()
            });
            groupby_threaded_num(str_hashes, 0, n_partitions as u64, sorted)
        } else {
            let str_hashes = self
                .into_iter()
                .map(|opt_s| {
                    let hash = match opt_s {
                        Some(s) => str::get_hash(s, &hb),
                        None => null_h,
                    };
                    StrHash::new(opt_s, hash)
                })
                .collect::<Vec<_>>();
            groupby(str_hashes.iter(), sorted)
        }
    }
}

impl IntoGroupsProxy for ListChunked {
    #[cfg(feature = "groupby_list")]
    fn group_tuples(&self, _multithreaded: bool, sorted: bool) -> GroupsProxy {
        groupby(self.into_iter().map(|opt_s| opt_s.map(Wrap)), sorted)
    }
}

#[cfg(feature = "object")]
impl<T> IntoGroupsProxy for ObjectChunked<T>
where
    T: PolarsObject,
{
    fn group_tuples(&self, _multithreaded: bool, sorted: bool) -> GroupsProxy {
        groupby(self.into_iter(), sorted)
    }
}

/// Used to tightly two 32 bit values and null information
/// Only the bit values matter, not the meaning of the bits
#[inline]
pub(super) fn pack_u32_tuples(opt_l: Option<u32>, opt_r: Option<u32>) -> [u8; 9] {
    // 4 bytes for first value
    // 4 bytes for second value
    // last bytes' bits are used to indicate missing values
    let mut val = [0u8; 9];
    let s = &mut val;
    match (opt_l, opt_r) {
        (Some(l), Some(r)) => {
            // write to first 4 places
            unsafe { copy_from_slice_unchecked(&l.to_ne_bytes(), &mut s[..4]) }
            // write to second chunk of 4 places
            unsafe { copy_from_slice_unchecked(&r.to_ne_bytes(), &mut s[4..8]) }
            // leave last byte as is
        }
        (Some(l), None) => {
            unsafe { copy_from_slice_unchecked(&l.to_ne_bytes(), &mut s[..4]) }
            // set right null bit
            s[8] = 1;
        }
        (None, Some(r)) => {
            unsafe { copy_from_slice_unchecked(&r.to_ne_bytes(), &mut s[4..8]) }
            // set left null bit
            s[8] = 1 << 1;
        }
        (None, None) => {
            // set two null bits
            s[8] = 3;
        }
    }
    val
}

/// Used to tightly two 64 bit values and null information
/// Only the bit values matter, not the meaning of the bits
#[inline]
pub(super) fn pack_u64_tuples(opt_l: Option<u64>, opt_r: Option<u64>) -> [u8; 17] {
    // 8 bytes for first value
    // 8 bytes for second value
    // last bytes' bits are used to indicate missing values
    let mut val = [0u8; 17];
    let s = &mut val;
    match (opt_l, opt_r) {
        (Some(l), Some(r)) => {
            // write to first 4 places
            unsafe { copy_from_slice_unchecked(&l.to_ne_bytes(), &mut s[..8]) }
            // write to second chunk of 4 places
            unsafe { copy_from_slice_unchecked(&r.to_ne_bytes(), &mut s[8..16]) }
            // leave last byte as is
        }
        (Some(l), None) => {
            unsafe { copy_from_slice_unchecked(&l.to_ne_bytes(), &mut s[..8]) }
            // set right null bit
            s[16] = 1;
        }
        (None, Some(r)) => {
            unsafe { copy_from_slice_unchecked(&r.to_ne_bytes(), &mut s[8..16]) }
            // set left null bit
            s[16] = 1 << 1;
        }
        (None, None) => {
            // set two null bits
            s[16] = 3;
        }
    }
    val
}

/// Used to tightly one 32 bit and a 64 bit valued type and null information
/// Only the bit values matter, not the meaning of the bits
#[inline]
pub(super) fn pack_u32_u64_tuples(opt_l: Option<u32>, opt_r: Option<u64>) -> [u8; 13] {
    // 8 bytes for first value
    // 8 bytes for second value
    // last bytes' bits are used to indicate missing values
    let mut val = [0u8; 13];
    let s = &mut val;
    match (opt_l, opt_r) {
        (Some(l), Some(r)) => {
            // write to first 4 places
            unsafe { copy_from_slice_unchecked(&l.to_ne_bytes(), &mut s[..4]) }
            // write to second chunk of 4 places
            unsafe { copy_from_slice_unchecked(&r.to_ne_bytes(), &mut s[4..12]) }
            // leave last byte as is
        }
        (Some(l), None) => {
            unsafe { copy_from_slice_unchecked(&l.to_ne_bytes(), &mut s[..4]) }
            // set right null bit
            s[12] = 1;
        }
        (None, Some(r)) => {
            unsafe { copy_from_slice_unchecked(&r.to_ne_bytes(), &mut s[4..12]) }
            // set left null bit
            s[12] = 1 << 1;
        }
        (None, None) => {
            // set two null bits
            s[12] = 3;
        }
    }
    val
}

/// We will pack the utf8 columns into single column. Nulls are encoded in the start of the string
/// by either:
/// 11 => both valid
/// 00 => both null
/// 10 => first valid
/// 01 => second valid
pub(super) fn pack_utf8_columns(
    lhs: &Utf8Chunked,
    rhs: &Utf8Chunked,
    n_partitions: usize,
    sorted: bool,
) -> GroupsProxy {
    let splits = split_offsets(lhs.len(), n_partitions);
    let hb = RandomState::default();
    let null_h = get_null_hash_value(hb.clone());

    let (hashes, _backing_bytes): (Vec<_>, Vec<_>) = splits
        .into_par_iter()
        .map(|(offset, len)| {
            let lhs = lhs.slice(offset as i64, len);
            let rhs = rhs.slice(offset as i64, len);

            // the additional 2 is needed for the validity
            let size = lhs.get_values_size() + rhs.get_values_size() + lhs.len() * 2 + 1;

            let mut values = Vec::with_capacity(size);
            let ptr = values.as_ptr() as usize;
            let mut str_hashes = Vec::with_capacity(lhs.len());

            lhs.into_iter().zip(rhs.into_iter()).for_each(|(lhs, rhs)| {
                match (lhs, rhs) {
                    (Some(lhs), Some(rhs)) => {
                        let start = values.len();
                        values.extend_from_slice("11".as_bytes());
                        values.extend_from_slice(lhs.as_bytes());
                        values.extend_from_slice(rhs.as_bytes());
                        // reallocated lifetime is invalid
                        debug_assert_eq!(ptr, values.as_ptr() as usize);
                        let end = values.len();
                        // Safety:
                        // - we know the bytes are valid utf8
                        // - we are in bounds
                        // - the lifetime as long as `values` not is dropped
                        //   so `str_val` may never leave this function
                        let str_val: &'static str = unsafe {
                            std::mem::transmute(std::str::from_utf8_unchecked(
                                values.get_unchecked(start..end),
                            ))
                        };
                        let hash = str::get_hash(str_val, &hb);
                        str_hashes.push(StrHash::new(Some(str_val), hash))
                    }
                    (None, Some(rhs)) => {
                        let start = values.len();
                        values.extend_from_slice("01".as_bytes());
                        values.extend_from_slice(rhs.as_bytes());
                        debug_assert_eq!(ptr, values.as_ptr() as usize);
                        let end = values.len();
                        let str_val: &'static str = unsafe {
                            std::mem::transmute(std::str::from_utf8_unchecked(
                                values.get_unchecked(start..end),
                            ))
                        };
                        let hash = str::get_hash(str_val, &hb);
                        str_hashes.push(StrHash::new(Some(str_val), hash))
                    }
                    (Some(lhs), None) => {
                        let start = values.len();
                        values.extend_from_slice("10".as_bytes());
                        values.extend_from_slice(lhs.as_bytes());
                        debug_assert_eq!(ptr, values.as_ptr() as usize);
                        let end = values.len();
                        let str_val: &'static str = unsafe {
                            std::mem::transmute(std::str::from_utf8_unchecked(
                                values.get_unchecked(start..end),
                            ))
                        };
                        let hash = str::get_hash(str_val, &hb);
                        str_hashes.push(StrHash::new(Some(str_val), hash))
                    }
                    (None, None) => str_hashes.push(StrHash::new(None, null_h)),
                }
            });
            (str_hashes, values)
        })
        .unzip();
    groupby_threaded_num(hashes, 0, n_partitions as u64, sorted)
}