1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
use crate::aggregations::ScanAggregation;
use crate::mmap::MmapBytesReader;
use crate::parquet::read_impl::read_parquet;
use crate::predicates::PhysicalIoExpr;
use crate::prelude::*;
use crate::RowCount;
use arrow::io::parquet::read;
use polars_core::prelude::*;
use std::io::{Read, Seek};
use std::sync::Arc;

/// Read Apache parquet format into a DataFrame.
#[must_use]
pub struct ParquetReader<R: Read + Seek> {
    reader: R,
    rechunk: bool,
    n_rows: Option<usize>,
    columns: Option<Vec<String>>,
    projection: Option<Vec<usize>>,
    parallel: bool,
    row_count: Option<RowCount>,
}

impl<R: MmapBytesReader> ParquetReader<R> {
    #[cfg(feature = "lazy")]
    // todo! hoist to lazy crate
    pub fn finish_with_scan_ops(
        mut self,
        predicate: Option<Arc<dyn PhysicalIoExpr>>,
        aggregate: Option<&[ScanAggregation]>,
        projection: Option<&[usize]>,
    ) -> Result<DataFrame> {
        // this path takes predicates and parallelism into account
        let metadata = read::read_metadata(&mut self.reader)?;
        let schema = read::schema::infer_schema(&metadata)?;

        let rechunk = self.rechunk;
        read_parquet(
            self.reader,
            self.n_rows.unwrap_or(usize::MAX),
            projection,
            &schema,
            Some(metadata),
            predicate,
            aggregate,
            self.parallel,
            self.row_count,
        )
        .map(|mut df| {
            if rechunk {
                df.rechunk();
            };
            df
        })
    }

    /// Read the parquet file in parallel (default). The single threaded reader consumes less memory.
    pub fn read_parallel(mut self, parallel: bool) -> Self {
        self.parallel = parallel;
        self
    }

    /// Stop parsing when `n` rows are parsed. By settings this parameter the csv will be parsed
    /// sequentially.
    pub fn with_n_rows(mut self, num_rows: Option<usize>) -> Self {
        self.n_rows = num_rows;
        self
    }

    /// Columns to select/ project
    pub fn with_columns(mut self, columns: Option<Vec<String>>) -> Self {
        self.columns = columns;
        self
    }

    /// Set the reader's column projection. This counts from 0, meaning that
    /// `vec![0, 4]` would select the 1st and 5th column.
    pub fn with_projection(mut self, projection: Option<Vec<usize>>) -> Self {
        self.projection = projection;
        self
    }

    /// Add a `row_count` column.
    pub fn with_row_count(mut self, row_count: Option<RowCount>) -> Self {
        self.row_count = row_count;
        self
    }

    pub fn schema(mut self) -> Result<Schema> {
        let metadata = read::read_metadata(&mut self.reader)?;

        let schema = read::infer_schema(&metadata)?;
        Ok((&schema.fields).into())
    }
}

impl<R: MmapBytesReader> SerReader<R> for ParquetReader<R> {
    fn new(reader: R) -> Self {
        ParquetReader {
            reader,
            rechunk: false,
            n_rows: None,
            columns: None,
            projection: None,
            parallel: true,
            row_count: None,
        }
    }

    fn set_rechunk(mut self, rechunk: bool) -> Self {
        self.rechunk = rechunk;
        self
    }

    fn finish(mut self) -> Result<DataFrame> {
        let metadata = read::read_metadata(&mut self.reader)?;
        let schema = read::schema::infer_schema(&metadata)?;

        if let Some(cols) = self.columns {
            self.projection = Some(columns_to_projection(cols, &schema)?);
        }

        read_parquet(
            self.reader,
            self.n_rows.unwrap_or(usize::MAX),
            self.projection.as_deref(),
            &schema,
            Some(metadata),
            None,
            None,
            self.parallel,
            self.row_count,
        )
        .map(|mut df| {
            if self.rechunk {
                df.rechunk();
            }
            df
        })
    }
}