1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
use crate::prelude::*;
use polars_core::prelude::*;
use polars_io::csv::{CsvEncoding, NullValues};
use polars_io::csv_core::utils::get_reader_bytes;
use polars_io::csv_core::utils::infer_file_schema;
use polars_io::RowCount;

#[derive(Clone)]
#[cfg(feature = "csv-file")]
pub struct LazyCsvReader<'a> {
    path: String,
    delimiter: u8,
    has_header: bool,
    ignore_errors: bool,
    skip_rows: usize,
    n_rows: Option<usize>,
    cache: bool,
    schema: Option<SchemaRef>,
    schema_overwrite: Option<&'a Schema>,
    low_memory: bool,
    comment_char: Option<u8>,
    quote_char: Option<u8>,
    null_values: Option<NullValues>,
    infer_schema_length: Option<usize>,
    rechunk: bool,
    skip_rows_after_header: usize,
    encoding: CsvEncoding,
    row_count: Option<RowCount>,
    parse_dates: bool,
}

#[cfg(feature = "csv-file")]
impl<'a> LazyCsvReader<'a> {
    pub fn new(path: String) -> Self {
        LazyCsvReader {
            path,
            delimiter: b',',
            has_header: true,
            ignore_errors: false,
            skip_rows: 0,
            n_rows: None,
            cache: true,
            schema: None,
            schema_overwrite: None,
            low_memory: false,
            comment_char: None,
            quote_char: Some(b'"'),
            null_values: None,
            infer_schema_length: Some(100),
            rechunk: true,
            skip_rows_after_header: 0,
            encoding: CsvEncoding::Utf8,
            row_count: None,
            parse_dates: false,
        }
    }

    /// Skip this number of rows after the header location.
    #[must_use]
    pub fn with_skip_rows_after_header(mut self, offset: usize) -> Self {
        self.skip_rows_after_header = offset;
        self
    }

    /// Add a `row_count` column.
    #[must_use]
    pub fn with_row_count(mut self, row_count: Option<RowCount>) -> Self {
        self.row_count = row_count;
        self
    }

    /// Try to stop parsing when `n` rows are parsed. During multithreaded parsing the upper bound `n` cannot
    /// be guaranteed.
    #[must_use]
    pub fn with_n_rows(mut self, num_rows: Option<usize>) -> Self {
        self.n_rows = num_rows;
        self
    }

    /// Set the number of rows to use when inferring the csv schema.
    /// the default is 100 rows.
    /// Setting to `None` will do a full table scan, very slow.
    #[must_use]
    pub fn with_infer_schema_length(mut self, num_rows: Option<usize>) -> Self {
        self.infer_schema_length = num_rows;
        self
    }

    /// Continue with next batch when a ParserError is encountered.
    #[must_use]
    pub fn with_ignore_parser_errors(mut self, ignore: bool) -> Self {
        self.ignore_errors = ignore;
        self
    }

    /// Set the CSV file's schema
    #[must_use]
    pub fn with_schema(mut self, schema: SchemaRef) -> Self {
        self.schema = Some(schema);
        self
    }

    /// Skip the first `n` rows during parsing. The header will be parsed at row `n`.
    #[must_use]
    pub fn with_skip_rows(mut self, skip_rows: usize) -> Self {
        self.skip_rows = skip_rows;
        self
    }

    /// Overwrite the schema with the dtypes in this given Schema. The given schema may be a subset
    /// of the total schema.
    #[must_use]
    pub fn with_dtype_overwrite(mut self, schema: Option<&'a Schema>) -> Self {
        self.schema_overwrite = schema;
        self
    }

    /// Set whether the CSV file has headers
    #[must_use]
    pub fn has_header(mut self, has_header: bool) -> Self {
        self.has_header = has_header;
        self
    }

    /// Set the CSV file's column delimiter as a byte character
    #[must_use]
    pub fn with_delimiter(mut self, delimiter: u8) -> Self {
        self.delimiter = delimiter;
        self
    }

    /// Set the comment character. Lines starting with this character will be ignored.
    #[must_use]
    pub fn with_comment_char(mut self, comment_char: Option<u8>) -> Self {
        self.comment_char = comment_char;
        self
    }

    /// Set the `char` used as quote char. The default is `b'"'`. If set to `[None]` quoting is disabled.
    #[must_use]
    pub fn with_quote_char(mut self, quote: Option<u8>) -> Self {
        self.quote_char = quote;
        self
    }

    /// Set values that will be interpreted as missing/ null.
    #[must_use]
    pub fn with_null_values(mut self, null_values: Option<NullValues>) -> Self {
        self.null_values = null_values;
        self
    }

    /// Cache the DataFrame after reading.
    #[must_use]
    pub fn with_cache(mut self, cache: bool) -> Self {
        self.cache = cache;
        self
    }

    /// Reduce memory usage in expensive of performance
    #[must_use]
    pub fn low_memory(mut self, toggle: bool) -> Self {
        self.low_memory = toggle;
        self
    }

    /// Rechunk the memory to contiguous chunks when parsing is done.
    #[must_use]
    pub fn with_rechunk(mut self, toggle: bool) -> Self {
        self.rechunk = toggle;
        self
    }

    /// Set  [`CsvEncoding`]
    #[must_use]
    pub fn with_encoding(mut self, enc: CsvEncoding) -> Self {
        self.encoding = enc;
        self
    }

    /// Automatically try to parse dates/ datetimes and time. If parsing fails, columns remain of dtype `[DataType::Utf8]`.
    #[cfg(feature = "temporal")]
    pub fn with_parse_dates(mut self, toggle: bool) -> Self {
        self.parse_dates = toggle;
        self
    }

    /// Modify a schema before we run the lazy scanning.
    ///
    /// Important! Run this function latest in the builder!
    pub fn with_schema_modify<F>(self, f: F) -> Result<Self>
    where
        F: Fn(Schema) -> Result<Schema>,
    {
        let mut file = std::fs::File::open(&self.path)?;
        let reader_bytes = get_reader_bytes(&mut file).expect("could not mmap file");
        let mut skip_rows = self.skip_rows;

        let (schema, _) = infer_file_schema(
            &reader_bytes,
            self.delimiter,
            self.infer_schema_length,
            self.has_header,
            // we set it to None and modify them after the schema is updated
            None,
            &mut skip_rows,
            self.comment_char,
            self.quote_char,
            None,
            self.parse_dates,
        )?;
        let mut schema = f(schema)?;

        // the dtypes set may be for the new names, so update again
        if let Some(overwrite_schema) = self.schema_overwrite {
            for (name, dtype) in overwrite_schema.iter() {
                schema.with_column(name.clone(), dtype.clone())
            }
        }

        Ok(self.with_schema(Arc::new(schema)))
    }

    pub fn finish_impl(self) -> Result<LazyFrame> {
        let mut lf: LazyFrame = LogicalPlanBuilder::scan_csv(
            self.path,
            self.delimiter,
            self.has_header,
            self.ignore_errors,
            self.skip_rows,
            self.n_rows,
            self.cache,
            self.schema,
            self.schema_overwrite,
            self.low_memory,
            self.comment_char,
            self.quote_char,
            self.null_values,
            self.infer_schema_length,
            self.rechunk,
            self.skip_rows_after_header,
            self.encoding,
            self.row_count,
            self.parse_dates,
        )?
        .build()
        .into();
        lf.opt_state.agg_scan_projection = true;
        Ok(lf)
    }

    pub fn finish(self) -> Result<LazyFrame> {
        if self.path.contains('*') {
            let paths = glob::glob(&self.path)
                .map_err(|_| PolarsError::ComputeError("invalid glob pattern given".into()))?;

            let lfs = paths
                .map(|r| {
                    let path = r.map_err(|e| PolarsError::ComputeError(format!("{}", e).into()))?;
                    let path_string = path.to_string_lossy().into_owned();
                    let mut builder = self.clone();
                    builder.path = path_string;
                    if builder.skip_rows > 0 {
                        builder.skip_rows = 0;
                        builder.n_rows = None;
                    }
                    // do no rechunk yet.
                    builder.rechunk = false;
                    builder.finish_impl()
                })
                .collect::<Result<Vec<_>>>()?;
            concat(&lfs, self.rechunk)
                .map_err(|_| PolarsError::ComputeError("no matching files found".into()))
                .map(|lf| {
                    if self.skip_rows != 0 || self.n_rows.is_some() {
                        lf.slice(self.skip_rows as i64, self.n_rows.unwrap() as u32)
                    } else {
                        lf
                    }
                })
        } else {
            self.finish_impl()
        }
    }
}